382 research outputs found

    Cosmological models with linearly varying deceleration parameter

    Full text link
    We propose a new law for the deceleration parameter that varies linearly with time and covers Berman's law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in International Journal of Theoretical Physic

    Low-Loss All-Optical Zeno Switch in a Microdisk Cavity Using EIT

    Full text link
    We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent field which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 micro-Watts of control-beam power for signal beams with less than single photon intensities inside the cavity.Comment: Updated with new references, corrected Eq 2a, and added introductory text. 7 pages, 5 figures, 3 table

    Atom gratings produced by large angle atom beam splitters

    Get PDF
    An asymptotic theory of atom scattering by large amplitude periodic potentials is developed in the Raman-Nath approximation. The atom grating profile arising after scattering is evaluated in the Fresnel zone for triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It is shown that, owing to the scattering in these potentials, two \QTR{em}{groups} of momentum states are produced rather than two distinct momentum components. The corresponding spatial density profile is calculated and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure

    Wavelets techniques for pointwise anti-Holderian irregularity

    Full text link
    In this paper, we introduce a notion of weak pointwise Holder regularity, starting from the de nition of the pointwise anti-Holder irregularity. Using this concept, a weak spectrum of singularities can be de ned as for the usual pointwise Holder regularity. We build a class of wavelet series satisfying the multifractal formalism and thus show the optimality of the upper bound. We also show that the weak spectrum of singularities is disconnected from the casual one (denoted here strong spectrum of singularities) by exhibiting a multifractal function made of Davenport series whose weak spectrum di ers from the strong one

    T-Odd Correlations in pi->e nu_e gamma and pi->mu nu_mu gamma Decays

    Full text link
    The transverse lepton polarization asymmetry in pi_l2gamma decays may probe T-violating interactions beyond the Standard Model. Dalitz plot distributions of the expected effects are presented and compared to the contribution from the Standard Model final state interactions. We give an example of a phenomenologically viable model, where a considerable contribution to the transverse lepton polarization asymmetry arises.Comment: 19 pages, 5 figures. To be published in Phys.Rev.D. Fixed sign in FSI contribution figure, fixed formulas in K-bar{K} mixing analysis, added some minor comment

    Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term Λ\Lambda

    Full text link
    In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW) cosmological models by considering three different forms of variable Λ\Lambda: Λ(a˙a)2\Lambda\sim(\frac{\dot{a}}{a})^2,Λ(a¨a)\Lambda\sim(\frac{\ddot{a}} {a}) and Λρ\Lambda \sim \rho. It is found that, the connecting free parameters of the models with cosmic matter and vacuum energy density parameters are equivalent, in the context of higher dimensional space time. The expression for the look back time, luminosity distance and angular diameter distance are also derived. This work has thus generalized to higher dimensions the well-known results in four dimensional space time. It is found that there may be significant difference in principle at least, from the analogous situation in four dimensional space time.Comment: 16 pages, no figur

    Persistence of a particle in the Matheron-de Marsily velocity field

    Full text link
    We show that the longitudinal position x(t)x(t) of a particle in a (d+1)(d+1)-dimensional layered random velocity field (the Matheron-de Marsily model) can be identified as a fractional Brownian motion (fBm) characterized by a variable Hurst exponent H(d)=1d/4H(d)=1-d/4 for d2d2. The fBm becomes marginal at d=2d=2. Moreover, using the known first-passage properties of fBm we prove analytically that the disorder averaged persistence (the probability of no zero crossing of the process x(t)x(t) upto time tt) has a power law decay for large tt with an exponent θ=d/4\theta=d/4 for d<2d<2 and θ=1/2\theta=1/2 for d2d\geq 2 (with logarithmic correction at d=2d=2), results that were earlier derived by Redner based on heuristic arguments and supported by numerical simulations (S. Redner, Phys. Rev. E {\bf 56}, 4967 (1997)).Comment: 4 pages Revtex, 1 .eps figure included, to appear in PRE Rapid Communicatio

    Non-Vacuum Bianchi Types I and V in f(R) Gravity

    Full text link
    In a recent paper \cite{1}, we have studied the vacuum solutions of Bianchi types I and V spacetimes in the framework of metric f(R) gravity. Here we extend this work to perfect fluid solutions. For this purpose, we take stiff matter to find energy density and pressure of the universe. In particular, we find two exact solutions in each case which correspond to two models of the universe. The first solution gives a singular model while the second solution provides a non-singular model. The physical behavior of these models has been discussed using some physical quantities. Also, the function of the Ricci scalar is evaluated.Comment: 15 pages, accepted for publication in Gen. Realtiv. Gravi

    Quantum interference in the fluorescence of a molecular system

    Get PDF
    It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. {\bf 77}, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifested in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory which explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. If the excitation process is composed of both a two-step one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.Comment: 11 pages, including 8 figure

    Dynamical aspects of quantum entanglement for weakly coupled kicked tops

    Full text link
    We investigate how the dynamical production of quantum entanglement for weakly coupled, composite quantum systems is influenced by the chaotic dynamics of the corresponding classical system, using coupled kicked tops. The linear entropy for the subsystem (a kicked top) is employed as a measure of entanglement. A perturbative formula for the entanglement production rate is derived. The formula contains a correlation function that can be evaluated only from the information of uncoupled tops. Using this expression and the assumption that the correlation function decays exponentially which is plausible for chaotic tops, it is shown that {\it the increment of the strength of chaos does not enhance the production rate of entanglement} when the coupling is weak enough and the subsystems (kicked tops) are strongly chaotic. The result is confirmed by numerical experiments. The perturbative approach is also applied to a weakly chaotic region, where tori and chaotic sea coexist in the corresponding classical phase space, to reexamine a recent numerical study that suggests an intimate relationship between the linear stability of the corresponding classical trajectory and the entanglement production rate.Comment: 16 pages, 11 figures, submitted to Phys. Rev.
    corecore